首页> 外文OA文献 >Dynamic Consistency of Conditional Simple Temporal Networks via Mean Payoff Games: a Singly-Exponential Time DC-Checking
【2h】

Dynamic Consistency of Conditional Simple Temporal Networks via Mean Payoff Games: a Singly-Exponential Time DC-Checking

机译:基于均值的条件简单时态网络的动态一致性   支付游戏:单指数时间DC检查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conditional Simple Temporal Network (CSTN) is a constraint-basedgraph-formalism for conditional temporal planning. It offers a more flexibleformalism than the equivalent CSTP model of Tsamardinos, Vidal and Pollack,from which it was derived mainly as a sound formalization. Three notions ofconsistency arise for CSTNs and CSTPs: weak, strong, and dynamic. Dynamicconsistency is the most interesting notion, but it is also the most challengingand it was conjectured to be hard to assess. Tsamardinos, Vidal and Pollackgave a doubly-exponential time algorithm for deciding whether a CSTN isdynamically-consistent and to produce, in the positive case, a dynamicexecution strategy of exponential size. In the present work we offer a proofthat deciding whether a CSTN is dynamically-consistent is coNP-hard and providethe first singly-exponential time algorithm for this problem, also producing adynamic execution strategy whenever the input CSTN is dynamically-consistent.The algorithm is based on a novel connection with Mean Payoff Games, a familyof two-player combinatorial games on graphs well known for having applicationsin model-checking and formal verification. The presentation of such connectionis mediated by the Hyper Temporal Network model, a tractable generalization ofSimple Temporal Networks whose consistency checking is equivalent todetermining Mean Payoff Games. In order to analyze the algorithm we introduce arefined notion of dynamic-consistency, named \epsilon-dynamic-consistency, andpresent a sharp lower bounding analysis on the critical value of the reactiontime \hat{\varepsilon} where the CSTN transits from being, to not being,dynamically-consistent. The proof technique introduced in this analysis of\hat{\varepsilon} is applicable more in general when dealing with lineardifference constraints which include strict inequalities.
机译:条件简单时态网络(CSTN)是用于条件时态规划的基于约束的图形式主义。与Tsamardinos,Vidal和Pollack的等效CSTP模型相比,它提供了更为灵活的形式主义,后者主要是从一种形式化的形式上得出的。 CSTN和CSTP出现了三个一致性概念:弱,强和动态。动态一致性是最有趣的概念,但也是最具挑战性的,因此很难评估。 Tsamardinos,Vidal和Pollack给出了双指数时间算法,用于确定CSTN是否动态一致,并在肯定的情况下产生指数大小的动态执行策略。在当前的工作中,我们提供了一个证明,即确定CSTN是否动态一致是coNP困难的,并提供了针对该问题的第一个单指数时间算法,并且在输入CSTN动态一致时也产生了动态执行策略。该算法基于与平均收益游戏(Mean Payoff Games)的新颖联系上,这是一种由两个人组成的组合游戏,在图形上以在模型检查和形式验证中的应用而闻名。这种连接的表示是由Hyper Temporal Network模型介导的,该模型是简单时态网络的易处理的概括,其一致性检查等效于确定平均收益博弈。为了分析该算法,我们引入了精确的动态一致性概念,即\ epsilon-dynamic-consistency,并针对反应时间\ hat {\ varepsilon}的临界值,从CSTN过渡到不存在,动态一致。在对\ hat {\ varepsilon}的分析中引入的证明技术在处理包括严格不等式在内的线性差异约束时通常更适用。

著录项

  • 作者

    Comin, Carlo; Rizzi, Romeo;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号